

Integrated Planning and Execution for a Planetary Lander

Daniel Wang, Joseph A. Russino, Connor Basich, and Steve A. Chien Jet Propulsion Laboratory California Institute of Technology firstname.lastname@jpl.nasa.gov

Acknowledgements

The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Background

- **Europa Lander mission concept**
- Mission Concept Objective¹:
 - Excavate the icy surface of the Jovian moon Europa, collect and analyze material samples for potential biosignatures, and communicate the data back to Earth.
 - Secondary objective to collect seismographic data and panoramic imagery.

Background

- Mission Concept Challenges:
 - Finite, non-rechargeable battery supply.
 - Large communication blackouts with Earth (every 42 out of 84 hours).
 - Unprecedented level of model uncertainty.
- Challenges motivate a higher level of autonomy, with integrated planning and execution
 - Use knowledge gained at execution time to drive planning
 - Flexible execution
 - Re-planning
 - Online model parameter update

Problem model

Europa Lander task network

Problem model

- Hierarchical task network (HTN)
 - Leverage domain knowledge and dependency structure
 - Decompositions of high-level parent tasks.
- Utility maximization
 - Award utility to sampling tasks
 - Award lesser utility to seismograph/panorama tasks
 - Utility is only achieved after communication

Planning and Execution

- HTN Heuristic Search: perform heuristic search on the space of (partial) plans using the utility to cost ratio as a heuristic. Select the plan with the best utility.
- Planning and Execution Framework: Based on MEXEC¹, an integrated planning and execution system originally designed for the Europa Clipper Mission.
 - 1. Flexible execution
 - 2. Re-planning
 - 3. Model parameter update

Results

- Evaluated 4 approaches
 - None¹
 - Flexible
 - Replan²
 - Model_update

¹Gaines, D.; Doran, G.; Justice, H.; Rabideau, G.; Schaffer, S.; Verma, V.; Wagstaff, K.; Vasavada, A.; Huffman, W.; Anderson, R.; et al. 2016b. Productivity challenges for marsrover operations: A case study of mars science laboratory operations. Technical report, Technical Report D-97908, Jet Propulsion Laboratory.

²Rabideaú, G., and Benowitz, E. 2017. Prototyping an on-board scheduler for the mars 2020 rover. In International Workshop on Planning and Scheduling for Space (IWPSS2017)

Results

Conclusion

- Future work: incorporate decision theory
- Current planning algorithm is deterministic.
 - Ignore uncertainty in domain model and stochasticity in execution.
 - Reactive to off-nominal performance, not proactive.
 - Potential approaches: Discounting utility based on projected energy value.
 - Considering a set of candidate plans and evaluating them against simulated resource utilization profiles.
- Planning in unknown environments requires integrated planning and execution

jpl.nasa.gov